Working Group Lead: Natalie Boelman

Wildlife & Ecosystem Services

Bohrer, Gil -- Ohio State University

Brinkman, Todd -- University of Alaska, Fairbanks

Chen, Wenjun -- Canada Centre for Mapping and Earth Observation

Clark, Karin -- GNWT, ENR, Wildlife

Cold, Helen -- University of Alaska, Fairbanks

Cosgrove, Christopher -- Oregon State University

Fienup-Riordan, Ann -- Calista Education and Culture, Inc.

Frost, Gerald (JJ) -- Alaska Biological Research, Inc

Gill, Michael (Mike) -- Polar Knowledge Canada

Goetz, Scott -- Northern Arizona University

Griffith, Peter -- NASA GSFC / SSAI

Gurarie, Eliezer -- University of Maryland

Hebblewhite, Mark -- University of Montana

Kimball, John -- University of Montana

Kirchner, Peter -- National Park Service

Scott LaPoint -- Lamont-Doherty Earth Observatory, Columbia Univ.

Macander, Matthew -- Alaska Biological Research, Inc. McCaffery,

Brian -- Fish and Wildlife Service

Meddens, Arjan -- University of Idaho

Miller, Charles (Chip) -- NASA JPL

Nolin, Anne -- Oregon State University

Oliver, Ruth -- Columbia University

Prugh, Laura -- University Of Washington

Reynolds, Joel -- U.S. Fish and Wildlife Service

Sowl, Kristine -- USFWS Yukon Delta National Wildlife Refuge

Vierling, Lee -- University of Idaho

Institutional Collaborations

Science Objectives

Objective #1. To **understand** how spatial and temporal dynamics in environmental and ecological conditions within the ABoVE Study Domain influence:

- (a) movement, habitat selection and population viability of a suite of highly mobile terrestrial animal species, and;
- (b) accessibility of natural resources to local subsistence communities.

Objective #2. To **provide local stakeholders** - including natural resource agencies, wildlife managers, First Nations, Alaskan natives, and other stakeholders - **with knowledge, products, and tools** that will aid them in making informed management and adaptation decisions.

Field Studies

** only shows where we are collecting field data ourselves **

Frost project

- coastal browning driven by:
 - Bering Sea climate drivers
 - landscape-scale disturbances
 (ie. flooding, salinization & PF thaw)
- reduced nesting habitat for upland shorebirds

Brinkman project

Locate & document disturbances influencing rural travel and access to local resources

Wildfire & Access

Travel hindered by fallen trees & thermokarsting following wildfires

Brinkman project

Permafrost Thaw

Bank Erosion

 \rightarrow

River Channel Change

Drying trend in streams obstructing travel

Prugh project

decreased with increasingly late spring snowmelt dates

Time series of alpine snow depth Chris Cosgrove from daily photos of snow stakes & Anne Nolin

60

= 65

70

Chen project

- soil pH/dust deposition
- noise
- vegetation disturbance

Boelman project

2017: use different tag firmware

Airborne Remote Sensing

Frost project

LVIS & AVIRIS =

Can offer cal/val data:

- ASD field spectra
- Vegetation composition

Boelman project

Existing airborne data

Mike Wulder, Natural Resources Canada

Ties to 2017 airborne campaign

Arjan Meddens

Brinkman project

Ties to 2017 airborne campaign:

High resolution imagery of river corridors in all seasons =

Aerial photo of Spring ice conditions Tanana River in Interior Alaska

Spaceborne Remote Sensing

Frost project

BROWNING \
in coastal tundra

GREENING
in interior uplands &
modern Yukon Delta

- Landsat MaxNDVI times-series (1999-2015)
- Consistent with AVHRR NDVI record

Brinkman project

Identification of disturbance signatures

i.e. open water impedes travel blue outlined polygon

Landsat8 OLI, Nov 1 2014

Prugh project

Estimates May 15 Snow Elevation

(linear or polynomial regression models)

Dave Verbyla

- delineated 28 mountain areas
- partitioned some ranges based on:
 - major climatic gradients
 - north vs. south facing slopes
- use MODSCAG daily snow cover fraction per pixel

Aspect & climatic gradients matters!

Alaska Range 30-May-2015

Boelman project

• Movebank: Compiling archive of arctic animal movement data Sarah Davidson

Modeling

MODEL TYPES

Resource Selection Functions (RSF) with Generalized Functional Responses (GFR) extension

SnowModel

MicroMet Model

Snowline Elevation

Population Viability Analyses

Harvest Models

Structural Equation & Agent-based Modeling

PRODUCTS

Maps of probability of wildlife habitat use for several groups of animals (present day)

Maps of multiple snow property variables high spatial/temporal res., Wrangell St-Elias & Lake Clark only

Maps of met variables high spatial res, Wrangell St-Elias & Lake Clark only

Maps showing elevation of spring snowline in mountainous regions on May 15 (2000-2015)

Trajectories of Dall sheep populations throughout their present day range

Key factors that affect Dall sheep harvest levels

Maps of changes in human access & rural travel in Interior Alaska, spatially & temporally explicit

Summary: Geospatial Data Products

<u>Boelman</u>	Animal movement data (including metadata) over the ABoVE Study Domain for all groups of study animals (caribou, wolf, moose, golden eagle, robin, bear) using Movebank. Will include data from mid-1990s to present day, wherever possible.
<u>Boelman</u>	Environmental data from various remote sensing and derived sources will be interpolated to a raster around the animal habitats or points along the animal tracks using Env-DATA tools.
<u>Boelman</u>	Vegetation structural change over time based on Landsat time-series (using Landtrendr) which will include data from mid-1990s to present
<u>Boelman</u>	Maps of probability of habitat use over the ABoVE Study Domain for all groups of study animals (caribou, wolf, moose, golden eagle, robin, bear)
<u>Brinkman</u>	Subsistence travel network around studied communities along with predicted travel network around ABoVE domain communities
<u>Brinkman</u>	Inventory of environmental disturbances influencing access for areas around studied communities. For 1980s, current, and future scenarios.
<u>Frost</u>	Linear trend RS veg maps (p < 0.05) for AVHRR (1982–2015), Landsat (circa 1985–2015), and MODIS (2000–2015) peak- and time-integrated NDVI for YK Delta. Results stratified by ecotype; e.g. coastal salt marshes and other important bird habitats
<u>Frost</u>	Disturbance mapping for central coast focus area (salt-killed vegetation, thermokarst); period-of-record circa 1945–2015
<u>Frost</u>	Disturbance- and landscape-change mapping for Yukon Delta area near Emmonak (channel migration, thermokarst, shrub expansion); period-of-record circa 1945–2015
<u>Frost</u>	Downscaled ERA-Interim reanalysis for suite of climate variables (gridded products)
Frost	Disturbance mapping to meet stakeholder needs in vicinity of Chevak and Emmonak villages (including ELOKA contribution)
Prugh_	Dall sheep products: geo-location (1997-present), harvest, survey (both 1950s to present)
<u>Prugh</u>	Snow datasets: snow cover fraction and snow extent for 15-May and 1-July (500m, 2000-present); Snow depth, snowpack stratigraphy, and snow water equivalent transect data (Wrangells, 100m, 2017-2018), SnowModel output (Wrangells, 100m, 2000-present)
<u>Prugh</u>	Max NDVI (Dall sheep range-wide, 250m, 2000-present)
<u>Prugh</u>	Alpine shrub extent (Range-wide, 30m, 1980s and present)
Prugh	MicroMet output (Wrangells, 100m, 2000-present)

Sno

Highest priority:

Snow vs. Wildlife & Ecosystem Services

1. To highlight the importance of spatial-temporal dynamics in snow properties on wildlife movement & human access to provisional ecosystem services

Snow vs.

Wildlife & Ecosystem Services

Towards characterizing wildlife relevant "snowscapes"

(for Frontiers in Ecology?)

- highlight importance
- review what's available
- identify what is missing/needed

identify how best to satisfy needs

